首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13249篇
  免费   1616篇
  国内免费   444篇
电工技术   1562篇
综合类   781篇
化学工业   2383篇
金属工艺   376篇
机械仪表   693篇
建筑科学   257篇
矿业工程   96篇
能源动力   5676篇
轻工业   62篇
水利工程   151篇
石油天然气   78篇
武器工业   281篇
无线电   316篇
一般工业技术   1484篇
冶金工业   116篇
原子能技术   362篇
自动化技术   635篇
  2024年   50篇
  2023年   915篇
  2022年   831篇
  2021年   814篇
  2020年   1236篇
  2019年   1026篇
  2018年   570篇
  2017年   719篇
  2016年   783篇
  2015年   887篇
  2014年   899篇
  2013年   983篇
  2012年   965篇
  2011年   806篇
  2010年   524篇
  2009年   667篇
  2008年   234篇
  2007年   464篇
  2006年   506篇
  2005年   300篇
  2004年   141篇
  2003年   151篇
  2002年   203篇
  2001年   183篇
  2000年   84篇
  1999年   135篇
  1998年   70篇
  1997年   40篇
  1996年   73篇
  1995年   9篇
  1994年   3篇
  1993年   2篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1959年   14篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The DCRFoam solver (density-based compressible solver) built on the OpenFOAM platform is used to simulate the reflection and diffraction processes that occur when detonation waves collide with various objects. Static stoichiometric hydrogen–oxygen mixtures diluted with 70% Ar are used to form stable detonation waves with large cells, with initial conditions of 6.67 kPa pressure and 298 K temperature. The diameters of the cylindrical obstacle range from 6 mm to 22 mm, with x = 230 mm, x = 244 mm, and x = 257 mm being the chosen position. Cylindrical, square, triangular, and inverted triangular obstacles are used, and the quenched detonation re-initiation processes behind them are investigated. In the detonation diffraction process, four triple points exist at the same time due to the effect of cylindrical obstacles of smaller diameters. The re-initiation distance of the detonation wave increases with the increase of cylindrical obstacle diameter. Both the Mach reflection angle and the decoupled angle decrease as the diameter increases. When the location of the cylindrical obstacles is changed, the detonation wave dashes into the obstacles with its different front structures, it is easier to realize the detonation re-initiation when the weak incident shock at the front of a detonation wave strikes the obstacles, and the re-initiation distance decreases by 17.1% when compared with the longest re-initiation distance. The detonation re-initiation distance is shortest under the action of cylindrical obstacles, however the quenched detonation cannot be re-initiated when the inverted triangle and square obstacles are used. The suppression effects of inverted triangle and square obstacles on detonation waves are more evident.  相似文献   
2.
《Ceramics International》2022,48(21):31995-32000
Among the existing material family of the correlated oxides, the rare earth nickelates (ReNiO3) exhibit broadly adjustable metal to insulator transition (MIT) properties that enables correlated electronic applications, such as thermistors, thermochromics, and logical devices. Nevertheless, how to accurately control the critical temperature (TMIT) of ReNiO3 via the co-occupation of the rare-earth elements is yet worthy to be further explored. Herein, we demonstrate the non-linearity in adjusting the TMIT of ReNiO3 towards lower temperatures via introducing Pr co-occupation within ReNiO3 (e.g., PrxNd1-xNiO3 and PrxSm1-xNiO3) as synthesized by KCl molten-salt assisted high oxygen pressure reaction approach. Although the TMIT is effectively reduced via Pr substitution, it does not strictly follow a linear relationship, in particular, when there is large difference in the ionic radius of the co-occupation rare-earth elements. Furthermore, the most significant deviation in TMIT from the expected linear relationship appears at an equal co-occupation ratio of the two different rare-earth elements, while the abruption in the variation of resistivity across TMIT is also reduced. The present work highlights the importance to use adjacent rare-earth elements with co-occupation ratio away from 1:1 for achieving more linear adjustment in designing the metal to insulator transition properties for ReNiO3.  相似文献   
3.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
4.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
5.
Electric vehicles (EVs) are considered a promising alternative to conventional vehicles (CVs) to alleviate the oil crisis and reduce urban air pollution and carbon emissions. Consumers usually focus on the tangible cost when choosing an EV or CV but overlook the time cost for restricting purchase or driving and the environmental cost from gas emissions, falling to have a comprehensive understanding of the economic competitiveness of CVs and EVs. In this study, a life cycle cost model for vehicles is conducted to express traffic and environmental policies in monetary terms, which are called intangible cost and external cost, respectively. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and CVs are compared in four first-tier, four new first-tier, and 4 s-tier and below cities in China. The comparison shows that BEVs and FCEVs in most cities are incomparable with CVs in terms of tangible cost. However, the prominent traffic and environmental policies in first-tier cities, especially in Beijing and Shanghai, greatly increase the intangible and external costs of CVs, making consumers more inclined to purchase BEVs and FCEVs. The main policy benefits of BEVs and FCEVs come from three aspects: government subsidies, purchase and driving restrictions, and environmental taxes. With the predictable reduction in government subsidies, traffic and environmental policies present important factors influencing the competitiveness of BEVs and FCEVs. In first-tier cities, BEVs and FCEVs already have a competitive foundation for large-scale promotion. In new first-tier and second-tier and below cities, stricter traffic and environmental policies need to be formulated to offset the negative impact of the reduction in government subsidies on the competitiveness of BEVs and FCEVs. Additionally, a sensitivity analysis reveals that increasing the mileage and reducing fuel prices can significantly improve the competitiveness of BEVs and FCEVs, respectively.  相似文献   
6.
Zhang  Qi  Wang  Yujing  Zhang  Xueling  Song  Jun  Li  Yinlei  Wu  Xuehong  Yuan  Kunjie 《Journal of Materials Science》2022,57(14):7208-7224
Journal of Materials Science - Form-stable composite phase change materials (C-PCMs) prepared by microencapsulation method and porous matrix adsorption method need for compression molding after...  相似文献   
7.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
8.
溶液浓差能驱动的逆电渗析反应器制氢实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
低品位热能制氢技术首先是将热能转换为溶液浓差能,然后通过逆电渗析(RED)反应器将溶液浓差能转换成氢能。为了验证RED反应器能将溶液浓差能转换为氢能,探索关键运行参数变化对能量转换过程的影响。设计了一个由40个膜对所构成的RED反应器,以NaCl水溶液为工作溶液,NaOH水溶液为电极液的制氢系统。通过改变浓/稀溶液入口浓度,溶液过膜流速以及输出电流来考察对RED反应器产氢率、制氢效率和能量转换效率的影响。实验结果发现,浓/稀溶液入口浓度,过膜流速变化均会影响RED反应器的输出电流。在外电路短接条件下,输出电流越大,反应器产氢率和制氢效率越高,但能量转换效率越低。  相似文献   
9.
《Ceramics International》2020,46(6):7396-7402
Nanocrystalline CuInS2 thin films were deposited on borosilicate glass substrates via chemical spray pyrolysis method. The structural, morphological, optical, and electrical properties were studied as a function of increasing annealing temperature from 250 to 350 ̊C. XRD analysis showed mixed phases at lower temperatures with the preferred orientation shifting towards the (112) chalcopyrite CuInS2 plane at higher substrate temperature. The crystallite size increased slightly between 13 and 18 nm with increase in annealing temperature. The optical band gap was determined on basis of Tauc extrapolation method and the Wemple–Di-Domenico single oscillator model. Possible structural and quantum confinement effect may have resulted in relatively larger band gaps of 1.67–2.04 eV, relative to the bulk value of 1.5 eV. The presence of CuxS in the as-deposited and wurtzite peaks after annealing at 350 ̊C play a role in influencing the optical and electrical properties of CuInS2 thin films.  相似文献   
10.
This paper presents a fast distance relay for series compensated transmission lines based on the R–L differential-equation algorithm using the theory of equal transfer process of transmission lines. The measuring distances based on the proposed algorithm can fast approach the actual value of fault distance when a fault occurs in front of the series capacitor. When a fault occurs behind of the series capacitor, the fault loop, including the series capacitor, does not match the R–L transmission line model, so the measuring distances fluctuate severely. Based on this, the relative position of the fault with respect to the series capacitor can be judged effectively according to the fluctuation range of the measuring distances, and the accurate fault location can be obtained fast. A variety of PSCAD/EMTDC simulation tests show that the new relay has fast operating speed and high accuracy when applied to the long series compensated transmission lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号